Дроссель гидравлический

 

Дроссель представляет собой местное регулируемое или нерегулируемое сопротивление устанавливаемое на пути течения жидкости с целью ограничения ее расхода, достигаемого отводом (сбросом) части его в сливную линию, или создания перепада давления.

Вязкостные и инерционные дроссели

По принципу действия дроссели различают на дросселя вязкостного сопротивления, потеря напора (давления) в которых определяется преимущественно вязкостным сопротивлением потоку жидкости в длинном дроссельном канале, и - дроссели инерционного сопротивления с малой длиной канала, потеря напора в которых определяется в основном инерционными силами (деформацией потока жидкости и вихреобразованием при внезапном расширении).

Дроссели первого типа характеризуются большой длиной и малым сечением канала и соответственно небольшим значением числа Рейнольдса, вследствие чего потеря напора в них в основном обусловлена трением при ламинарном течении, т. е. потеря напора является при всех прочих равных условиях практически линейной функцией скорости течения (и расхода) жидкости. Однако поскольку потеря напора в таких дросселях изменяется прямо пропорционально вязкости жидкости, гидравлическая характеристика их зависит от температуры. Такие дроссели получили название линейных.

В дросселях второго типа давление изменяется практически пропорционально квадрату скорости потока жидкости поэтому их называют квадратичными. Характеристика таких дросселей не зависит от вязкости в распространенном ее диапазоне.

Поворотные и вентильные дроссели

В гидросистемах низкого и среднего давления распространены дроссели типа поворотного крана (рис. 25, а – в) и типа запорных вентилей (рис. 26, а – г).

Дроссели поворотного типа

Рис. 25. Дроссели поворотного типа

Дроссели вентильного типа

Рис. 26. Дроссели вентильного типа

В автоматических системах часто требуется обеспечить строго квадратичную зависимость расхода жидкости через крановый дроссель от угла поворота его пробки, что достигается выполнением профиля дросселируещей щели в поворотной пробке по архимедовой спирали (рис. 25, а). Для обеспечения стабильности расхода при изменениях вязкости жидкости необходимо уменьшать ширину перемычки а.

Недостатком дросселей с поворотной пробкой является зависимость расхода жидкости через них от температуры, а также возможность засорения проходного канала, особенно при малых его сечениях.

Для устранения засорения проходного канала применяют дроссели в которых сопротивление регулируется изменением длины канала дросселя (рис. 27, а) или изменением количества местных сопротивлений (рис. 27, б) с постоянными проходными сечениями. В дросселе, представленном на рис. 27, а, сопротивление регулируется изменением длины канала, которым в этом случае служит винтовая прямоугольная канавка. Ввинчиванием или вывинчиванием винта можно изменять длину канала, а следовательно, регулировать сопротивление дросселя. Ввиду того, что сопротивление этого дросселя определяется, в основном вязкостью жидкости, он может применяться только лишь при стабильных температурах.

Дроссели винтового и диафрагменного типов

Рис. 27. Дроссели винтового (а) и диафрагменного (б) типов

В условиях широкого колебания температур применяют дроссели в виде тонкой шайбы (диафрагмы) с круглым дроссельным отверстием. Дросселирующие свойства отверстий в

таких шайбах в основном обусловлены внезапным сжатием потока жидкости при входе в отверстие и внезапным его расширением при вытекании из него. Этот дроссель обладает минимальной зависимостью сопротивления от вязкости жидкости, поскольку потеря напора здесь обусловлена в основном инерционным сопротивлением (потеря на сообщение частицам жидкости ускорений). При разработке гидравлических систем часто требуется дроссель, обладающий высоким гидравлическим сопротивлением и стабильными расходными характеристиками при колебаниях вязкости. Удовлетворить подобные требования одной дроссельной шайбой невозможно, поскольку размер ее отверстия при этом должен быть зачастую недопустимо (из-за возможности засорения) малым. Ввиду этого применяются дроссели из последовательно соединенных шайб (пакета шайб (рис. 27, в), сопротивление которых обусловлено многократным сужением и расширением потока жидкости. Регулирование сопротивления такого дросселя осуществляется подбором количества шайб. Нетрудно видеть, что подбором профиля проходного сечения можно создать дроссель (клапан) с линейной характеристикой расхода по ходу подвижного элемента. Такое требование предъявляется например, к гидравлическим демпферам, поглощающим энергию колебаний в др. На рис 28, а показана схема подобного дросселя. В расточке корпуса 12 помещен дроссельный плунжер 13, на котором выполнены рабочие щели в виде треугольных продольных пазов (усиков). Величина рабочей щели 11 дросселя при регулировании расхода изменяется перемещением дроссельного плунжера вдоль его оси. Это перемещение осуществляется поворотом лимба 1, который через штифт 2 поворачивает втулку 3, сидящую в расточке крышки 4. От поворота вокруг своей оси дроссельный плунжер 13 удерживается штифтом 6, который ходит по пазу корпуса. Стопорение лимба 1 в заданном положении осуществляется винтом. Зазор между штифтом 5 и стенками винтовой канавки на дроссельном плунжере выбирается под действием пружины 8.

Угол, на который поворачивается лимб .1 при регулировании расхода от наименьшего до наибольшего, составляет 300°.

Подвод рабочей жидкости к дросселю и отвод ее осуществляется через присоединительные отверстия 7 и 10. Утечки отводятся через штуцер 9.

Схемы гидравлических дросселей

Рис. 28. Схемы дросселей

На рис. 28, б показана схема управления (регулирования) подобным дросселем с помощью кулачков, воздействующих через ролик 3 и поворотный рычаг 2 на дроссельный плунжер 3. При набегании соответствующего кулачка на ролик 3 золотник 1 перемещается вправо, увеличивая тем самым сопротивление проходу жидкости.

Похожие материалы