Неразрушающие методы контроля позволяют проверять качество поковок и деталей (на отсутствие наружных и внутренних дефектов) без нарушения их целостности и могут быть использованы в сплошном контроле. К таким методам контроля относятся рентгено- и гамма-дефектоскопия, а также ультразвуковая, магнитная, капиллярная и другие виды дефектоскопии.
Рентгенодефектоскопия основана на способности рентгеновского излучения проходить через толщу материала и поглощаться последним в различной степени в зависимости от его плотности. Излучение, источником которого является рентгеновская трубка, направляют через контролируемую поковку на чувствительную фотопластинку или светящийся экран. Если в поковке имеется дефектное место (например, трещина), излучение, проходящее через него, поглощается слабее, а фотопленка засвечивается сильнее. Регулируя интенсивность рентгеновского излучения, получают изображение в виде ровного светлого фона в бездефектных местах поковки и отличительного темного участка - в месте нахождения дефекта.
Выпускаемые промышленностью рентгеновские установки позволяют просвечивать стальные поковки толщиной до 120 мм, а поковки из легких сплавов - до 250 мм.
Контроль поковок гамма-дефектоскопией аналогичен контролю рент- генодефектоскопией. На определенном расстоянии от исследуемого объекта устанавливают источник гамма-излучения, например капсулу с радиоактивным кобальтом-60, а с противоположной стороны объекта - устройство для регистрации интенсивности излучения. На индикаторе интенсивности (фотопленке) проявляются дефектные участки, имеющиеся внутри заготовки или поковки. Толщина контролируемых заготовок (поковок, деталей) достигает 300 .. .500 мм.
Во избежание облучения при использовании в качестве методов контроля рентгено- и гамма- дефектоскопии необходимо строго соблюдать требования безопасности и быть предельно осторожным.
Рис. 9.7. Установка для ультразукового контроля металла: 1 - осциллограф, 2, 3, 4 - световые импульсы, 5 - блок, 6 -головка, 7 - поковка, 8 - дефект
Ультразвуковая дефектоскопия является наиболее распространенным методом контроля, позволяющим проверять поковки толщиной до 1 м. Установка для ультразвукового контроля эхо-методом (рис. 9.7) состоит из искательной головки 6 и блока 5, в котором размещены генератор ультразвуковых электрических колебаний (частота свыше 20 кГц) и осциллограф 1. Головка 6 представляет собой пьезоэлектрический преобразователь электрических колебаний в механические.
С помощью искательной головки на исследуемый участок поковки 7 направляют импульс ультразвуковых колебаний, который отразится сначала от поверхности поковки, затем ( с некоторым опозданием) - от дефекта 8 и еще позже - от донной поверхности объекта. Отраженный импульс (эхо) вызывает колебание пьезокристалла искательной головки, который преобразует механические колебания в электрические.
Электрический сигнал усиливается в приемнике и регистрируется на экране осциллографа 1: расстояние между импульсами 2,3 и 4 определяет глубину нахождения дефекта, а форма кривых - величину и характер последнего.
Наиболее распространенным видом магнитной дефектоскопии является магнитно-порошковый метод, применяемый для контроля магнитных сплавов железа, никеля и кобальта. Стальную деталь намагничивают электромагнитом, а затем покрывают суспензией из керосина и магнитного порошка. В местах наличия дефекта частицы магнитного порошка скапливаются, копируя форму и размеры не только поверхностных трещин, но и дефектов, расположенных на глубине до 6мм.
Магнитно-порошковый метод позволяет выявить крупные и очень мелкие дефекты шириной 0,001 ...0,03 и глубиной до 0,01 ... 0,04 мм.
Капиллярная дефектоскопия основана на свойстве жидкостей под действием капиллярных сил заполнять полости поверхностных дефектов (трещин). Используемые для контроля жидкости либо обладают способностью люминесцировать под действием ультрафиолетового излучения (люминесцентная дефектоскопия), либо имеют окраску, четко выделяющуюся на общем фоне поверхности. Например, при люминесцентной дефектоскопии поковки погружают в раствор минерального масла в керосине, промывают, просушивают, а затем опыляют порошком оксида магния. Если осматривать невооруженным глазом такую поверхность при свете ртутной лампы, на фоне темно-фиолетовой поверхности поковки ясно видны ярко-белые трещины. Метод позволяет определять наличие трещин шириной от 1 до 400 мкм.